Some integrable maps and their Hirota bilinear forms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hirota bilinear identity and integrable q - difference and lattice hierarchies

Hirota bilinear identity for Cauchy-Baker-Akhieser (CBA) kernel is introduced as a basic tool to construct integrable hierarchies containing lattice and q-difference times. Determinant formula for the action of meromorphic function on CBA kernel is derived. This formula gives opportunity to construct generic solutions for integrable lattice equations.

متن کامل

Hirota Bilinear Formalism and Supersymmetry

Extending the gauge-invariance principle for τ functions of the standard bilinear formalism to the supersymmetric case, we define N = 1 supersymmetric Hirota operators. Using them, we bilinearize SUSY nonlinear evolution equations. The super-soliton solutions and extension to SUSY sine-Gordon are also discussed. As a quite strange paradox it is shown that the Lax integrable SUSY KdV of Manin-Ra...

متن کامل

Some Recent Results on Integrable Bilinear Equations

This paper shows that several integrable lattices can be transformed into coupled bilinear differential-difference equations by introducing auxiliary variables. By testing the Bäcklund transformations for this type of coupled bilinear equations, a new integrable lattice is found. By using the Bäcklund transformation, soliton solutions are obtained. By the dependent variable transformation, this...

متن کامل

Desargues Maps and the Hirota–miwa Equation

We study the Desargues maps φ : Z → P , which generate lattices whose points are collinear with all their nearest (in positive directions) neighbours. The multidimensional consistency of the map is equivalent to the Desargues theorem and its higher-dimensional generalizations. The nonlinear counterpart of the map is the non-commutative (in general) Hirota–Miwa system. In the commutative case of...

متن کامل

Arens regularity of bilinear maps and Banach modules actions

‎Let $X$‎, ‎$Y$ and $Z$ be Banach spaces and $f:Xtimes Y‎ ‎longrightarrow Z$ a bounded bilinear map‎. ‎In this paper we‎ ‎study the relation between Arens regularity of $f$ and the‎ ‎reflexivity of $Y$‎. ‎We also give some conditions under which the‎ ‎Arens regularity of a Banach algebra $A$ implies the Arens‎ ‎regularity of certain Banach right module action of $A$‎ .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2017

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8121/aa9b52